Wednesday, April 03, 2013

FERC Optimal Power Flow and Formulation Papers

FERC original link 

The AC Optimal Power Flow (ACOPF) is at the heart of Independent System Operator (ISO) power markets and vertically integrated utility dispatch. ACOPF simultaneously optimizes real and reactive power. An approximated form of the ACOPF is solved in some form annually for system planning, daily for day-ahead commitment markets, and even every 5 minutes for real-time market balancing. The ACOPF was first formulated in 1962 by Carpentier. With advances in computing power and solution algorithms, we can model more constraints and remove unnecessary limits and approximations that were previously required to find a good solution in reasonable time. Today, 50 years after the problem was formulated, we still do not have a fast, robust solution technique for the ACOPF. Finding a good solution technique for the ACOPF could potentially save tens of billions of dollars annually. The ACOPF formulation co-optimizes real and reactive power, internalizes losses (not estimated as in the ‘DC’ model) and has explicated voltage bounds, but requires more time to solve and better data. The current-voltage formulation (IV-ACOPF) has linear network flow equations. Its non-convexities occur at injection and withdrawal busses when current and voltage are converted to real and reactive power and its thermal constraints expressed in term of current magnitude. It better models thermal constraints by limiting the line current instead of power flow. The iterative linear approximation (ILIV-ACOPF) solves faster and is more robust than most other approaches examined. Parameter tuning can improve performance. With binary variables, for example, as in the unit commitment and optimal transmission switching problems, linear approximations can be solved faster than nonlinear models. In this series of papers, we seek to present the ACOPF problem through clear formulations of the problem, its constraints and its parameters. We survey historical approaches to solving the problem. We also formulate and test several approaches and algorithms to solving the ACOPF. We find that rectangular formulation solves faster than the polar formulation for the larger problems. We also present an iterative approximation and test it against a set of standard nonlinear solvers.

Papers and Abstracts

Paper 1

In "History of Optimal Power Flow and Formulations", we present a literature review of the AC Optimal Power Flow (ACOPF) problem over the 50 years since it was formulated in 1962, and present the major formulations of the ACOPF. We refer to the full ACOPF as an ACOPF that simultaneously optimizes real and reactive power. This paper defines and discusses the polar power-voltage, rectangular power-voltage, and rectangular current-voltage formulations of the ACOPF, as well as different forms of constraints and objective functions. (issued December 17, 2012) 

Paper 2 

In "The IV Formulation and Linearizations of the AC Optimal Power Flow Problem", we formulate the ACOPF in several ways, compare each formulation’s properties, and argue that the current-voltage or “IV” formulation and its linear approximations may be easier to solve than the traditional quadratic power flow “PQV” formulation. (Issued January 30, 2013) 

Paper 3 

In "The Computational Testing of AC Optimal Power Flow Using the Current Voltage (IV) Formulations", we compare solving the IV linear approximation of the ACOPF to solving the ACOPF with several nonlinear solvers. In general, the linear approximation approach is more robust and faster than several of the commercial nonlinear solvers. On several starting points, the nonlinear solvers failed to converge or contained positive relaxation variables above the threshold. The iterative linear program approach finds a near feasible near optimal in almost all problems and starting points. (Issued January 30, 2013) 

Paper 4 

In "Survey of Approaches to Solving the ACOPF", we present a background on approaches historically applied to solve the ACOPF, many which are used in our following companion study on testing and the computational performance of solution techniques. In this paper we present the associated theory in nonlinear optimization and discuss solvers and published algorithms that have been applied to the ACOPF. We provide insight into the major contributions starting from Carpentier's initial contribution in the early 1960's to present day state-of-the-art. (Issued March 29, 2013) 

Paper 5

In "Computational Performance of Solution Techniques Applied to the ACOPF", we present an experimental framework and statistical methods that are an improvement on current practices and in line with practices in the optimization community. We report numerical results from testing nonlinear commercial solvers with varying ACOPF formulations and initializations. Our experimental results indicate a clear advantage to employing a multistart strategy, which leverages parallel processing in order to solve the ACOPF on large-scale networks for time-sensitive applications. (Issued March 29, 2013)

GoTo Comprehensive List of Posts in this Blog (Ir a Lista Completa de Todos los Comentarios del Blog)
GoTo Last Comment in Main Page (Ir al Último Comentario en la Página Principal del Blog)


Post a Comment

<< Home